NPOI Vacuum Manifold

Wyatt Clark | Cydny Clark | Alex McClinton

Photo: https://lowell.edu/research/telescopes-and-facilities/npoi/

Presentation Outline

- Project Description
 - Background information
 - Who is the client
- Benchmarking
 - Current in use system
 - Overview how we fit in
 - Why it's important
 - Other industry systems
- Literature Review
 - Technical resources

- Project Requirements
 - Customer and Engineering
- Schedule and Budget
 - Project timeline | budget

Project Description (Background Information)

- The Navy Precision Optical Interferometer (NPOI) is the world's largest optical interferometer with a 430meter footprint [1]
- It is a collection of up to 6 small telescopes that work together to synthesize a much larger telescope
- Star light collected by the small telescopes travels through a large vacuum array to a detector
- Parts of the vacuum system need a redesign to increase safety and relatability

https://www.google.com/maps/@35.0965761,-111.5337258,600m/data=!3m1!1e3

Wyatt, 9/13/21, NPOI Vacuum Manifold, 21F03

Project Description (Client)

NPOI is a Navy instrument in collaboration with long term contractor Lowell Observatory. Jim Clark is the primary client representing all three organizations. He is also the current director of NPOI.

Wyatt, 9/13/21, NPOI Vacuum Manifold, 21F03

Image: The six fast delay line vacuum tubes

- NPOI utilizes two types of light path delay lines. The image features the "Fast Delay Lines" (FDLs) which are held under vacuum
- This Capstone will mechanically interface with all six FDLs
- The Capstone team will develop a new vacuum manifold between the vacuum pump(s) and the delay lines

- A rotary-vain vacuum pump is mounted to the wall (out of frame)
- Copper pipe is used to connect the vacuum pump to each of the delay lines
- Each delay line is isolated by a vacuum valve
- The manifold attaches to the delay line via the "snoots"

Image: Connection of FDL to current vacuum manifold

Cydny, 9/13/21, NPOI Vacuum Manifold, 21F03

- The snoots extend into the "inner optics room"
- The snoots hold expensive optics and are held in precision alignment
- Any time work needs to be performed on the delay lines the manifold and snoots must be disassembled

Image: Inner optics room

Image: Pump and current vacuum lines

Cydny, 9/13/21, NPOI Vacuum Manifold, 21F03

Image: Connection of snoots to manifold

- The off-axis force induces a moment about the vacuum pump flange
- The combined moment is approximately 277 ft*lbf
- The system is not stable and is rotating over time
- Bellows are used to compensate for the positional uncertainty
- Note the variation in manifold connection angles

Alex, 9/13/21, NPOI Vacuum Manifold, 21F03

Benchmarking (Overview How We Fit In)

Why it's Important

- Current system is failing
- Current system is dangerous
- Current system is hard to use

Image: different angle of connection to manifold (line 6 removed)

What we are doing

The Capstone team has been tasked to design, manufacture, install, and validate a new FDL vacuum manifold

Alex, 9/13/21, NPOI Vacuum Manifold, 21F03

Benchmarking (Other Industry Systems)

- Laser Interferometer Gravitational-Wave Observatory (LIGO)
 - World's third-largest vacuum chambers: Two L-shaped detectors with 4 km long vacuum chambers [2]
 - The pressure inside LIGO's vacuum tubes is one-trillionth of an atmosphere (10⁻⁹ torr)
 [2]

Outside View Of LIGO's Arms [3] Alex, 9/13/21, NPOI Vacuum Manifold, 21F03

Literature Review (Wyatt)

- 1. "VACUUM EQUIPMENT FOR RESEARCH AND DEVELOPMENT" by Edwards Vacuum [4]
 - Covers a verity of industry standard vacuum hardware and best use cases
 - Covers the Importance of proper vacuum hardware selection and methods for making selections
- 2. "Flange Systems Overview" by Kurt J. Lester Company [5]
 - NPOI utilizes KJLC hardware and the KF system for most "off the shelf" compensates
 - Discusses the types of vacuum flange connections and in what situations they should be used
- 3. "Valves Technical Notes" by Kurt J. Lester Company [6]
 - Discusses types of vacuum system valves and how to select the best style for your application
 - Argues a valve is equally important as a vacuum pump

Images from KJLC

Wyatt, 9/13/21, NPOI Vacuum Manifold, 21F03

Literature Review (Alex)

- 1. "Metal Expansion Joints and Metal Bellows" by MACOGA Engineered Expansion Joint [7]
 - Details the various types of expansion joints and metal bellows that can be manufactured and how to best utilize them
- 2. "Vacuum Technology of the LIGO Interferometers" by LIGO [8]
 - Covers the basics of how LIGO achieves its 10⁻⁹ torr vacuum
 - Details the challenges in maintaining this low pressure
- 3. "Vacuum Physics and Technology" Chapter 8 by Y. Shapira and D. Lichtman [9]
 - Covers how various materials react to vacuum pressure
 - Uses these considerations to showcase the best materials for building vacuum pipes

Literature Review (Cydny):

- 1. "FORMAL METHODOLOGY FOR SAFETY-CRITICAL SYSTEMS ENGINEERING AT CERN " by F. Valentini [10]
 - Describes that for the unction and operation of the CERN LHC one major aspect of the safety plan is to use safety function modeling.
- 2. "LIGO Caltech 40 Meter Laboratory Laser Safety Plan" by Alan Weinstein [11]
 - Outlines the overall safety goal as well as the safety procedures for the use of the lab facilities.
 - This is a document given to any person entering the lab and is to be signed off on, stating that each person understands the contents of the documents and the outlined safety precautions.
- 3. "Observer Troubleshooting- Vacuum" by NPOI
 - This document serves as a list of instruction of what to do and what not to do when working with the vacuum.
 - There are also question and answer sections that describe how instruments should be functioning.

Project Requirements (Customer)

- Develop a new FDL vacuum manifold
- Must be safe and reliable
- Must include high vacuum pressure sensors
- Must reduce mechanical transfer of vibration
- Must be an improvement to downtime work
- Cannot connect to the snoots
- Should consider future NPOI work/programs/modifications

Project Requirements (Engineering)

- Created by putting a quantifiable numerical value on customer needs
- Optimize material for:
 - Cost
 - Manufacturing
 - Strength
 - Vacuum degradation / contamination
- Optimize design for:
 - Supporting external loads
 - System factors of safety
 - Cycles to failure
 - Flexibility of design (accommodate future needs)

Project Requirements (QFD)

House Of Quality	*	Ļ	Ļ	*	*		Î		Improvement Direction												
Design			U U	,,					C	Customer Competitive Assessment											
Requirements	s Importance	Factors of Saftey	Manufactureing Lead Tim	Project Cost	Smaller Pump Flow Rate	Main Pump Flow Rate	Minimize downtime	Y oungs Modulus	1 Worst	0			4	5 Best							
Safty	9	9	1	9					А				BC								
Cost	3	9	9	9			1		В	С	Α										
Ease of use	3			1	1	9	3			BC	Α										
Relyability	9	9		3			3	3		Α		BC									
Repairability 9		1	1	3			9	1		Α	BC										
Longjevity	3	9	1	3	1			3		Α	BC										
Furture project intagration 1			1	3		1	1			ABC											
Technical Importance: Ab	solute	147	34	102	10	81	84	33			▲				Кеу						
Technical Importance: Re	lative	35%	8%	27%	1%	4%	19%	7%							Current Sy	sA					
Target Value		2.5	4	10000	2.1	350	4	190							CERN	В					
Units		N/A	Weeks	US\$	Torr/min	m ³ /Hr	Hr	GPa	1						LIGO	С					
Design Competitive Assessment	Worst: 1			,†	,t	· · · · · ·	Α		1												
	2		A C		,	1			1												
	3	BC AB		AB	,	1	BC	Α	1												
	4	Α		,	A	ABC		BC													
	Best: 5	BC			BC																

Cydny, 9/13/21, NPOI Vacuum Manifold, 21F03

Schedule

- Deliverables and Due dates
 - Presentation 1: 9/12/21
 - Concept Generation: 9/22/21
 - Concept Evaluation: 9/28/21
 - Start CAD and eval. By client: 9/29/21
 - Presentation 2: 10/2/21
 - Start making/ordering some parts: 10/3/2021
 - All Literature review sources: 10/8/21
 - Preliminary Report: 10/15/21
 - Website basics: 10/22/21

NPOI Vacuum	Manifol	d																										
					Learnt	On track	Low	e risk	Med ri	ick	High	risk	Unass	iened														
					Ligen.	On theck			meen			1134	Units.	ing ne u														
Project Start Date:	9/8/2021					September										Oc	tober											
Scrolling increment:	0					8 9 10 11	12 13 14	15 16 1	7 18 19 21	0 21 22	2 23 24	25 26 2	7 28 29	30 1 2	34	5 6	78	9 10 1	1 12 11	14 15	16 17	18 19	20 21	22 23 2	4 25 26	27 28	29 30 3	31 1 2
Milestone description	Category	Assigned to	Progress	Start	End	W T F S	s м т	w т р	s s N	t w	T F	s s n	t w	T F S	S M	T W	T F	S S N	t w	T F	s s	мт	w т	F S :	мт	м т	F S	S M T
Presentation 1	Goal						Т																					
Project Description	On Track	All	50N	9/8/2021	9/12/2021																							
Background & Benchmarking	On Track	All	50N	9/8/2021	9/12/2021																							
Literature Review	On Track	All	0%	9/8/2021	9/12/2021																							
Customer and Engineering Requirements	On Track	All	25%	9/8/2021	9/12/2021																							
Schedule & Budget:	On Track	All	50 N	9/8/2021	9/12/2021																							
Presentation 2	Goal																											
Project Description	On Track	All	0%	9/13/2021	10/2/2021																							
Concept Generation	On Track	All	0%	9/13/2021	10/2/2021																							
Concept Evaluation	On Track	All	0 %	9/13/2021	10/2/2021																							
Budget Planning	On Track	All	0%	9/13/2021	10/2/2021																							
Preliminary Report	Goal																											
Background	On Track	All	0%	9/13/2021	10/15/2021																							
Requirments	On Track	All	0%	9/13/2021	10/15/2021																							
Design Space Research	On Track	All	0%	9/13/2021	10/15/2021																							
Benchmarking	On Track	All	0%	9/13/2021	10/15/2021																							
Functional Decomposition	On Track	All	0%	9/13/2021	10/15/2021																							
Concept Generation/Selection	On Track	All	0%	9/13/2021	10/15/2021																							
Sources	On Track	All	0%	9/13/2021	10/15/2021																							
Website 1																												
Project Description	On Track	All	0%	9/13/2021	10/22/2021																							
Team/About Us	On Track	All	0%	9/13/2021	10/22/2021																							
Gallery	On Track	All	0%	9/13/2021	10/22/2021																							
Documents	On Track	All	0%	9/13/2021	10/22/2021																							
Presentation 3	Goal																											
Prototype and CAD package	On Track	All	0%	9/13/2021	11/2/2021																							
																											_	_

Alex, 9/13/21, NPOI Vacuum Manifold, 21F03

Schedule (Continued)

- Deliverables and Due dates
 - Prototype and CAD: 10/26/21
 - Built at least one tanks worth of headwear: 11/2/21
 - Presentation 3: 11/2/21
 - Final Report: 11/14/21
 - Finished CAD Model: 11/15/21
 - Final BOM (and CAD): 11/19/21
 - Final Prototype: 12/3/21
 - Integration with NPOI: 12/2/21
 - Website 2: 12/7/21

Budget

- Total Budget: 14,000\$
- Expected Expenditures:
 - Materials: pressure sensors, tubing, readers, valves ~6000\$
 - Prototype cost: ~2000\$
 - Testing: ~1000\$
 - Installation: ~500\$
 - Buffer: ~4500\$
- Expenditures to Date: 0\$

Alex, 9/13/21, NPOI Vacuum Manifold, 21F03

References

- [1] "NPOI Navy Precision Optical Interferometer." http://www2.lowell.edu/rsch/npoi/index.php (accessed Sep. 11, 2021).
- [2] "Facts | LIGO Lab | Caltech." https://www.ligo.caltech.edu/page/facts (accessed Sep. 11, 2021).
- [3] "aerial_ligo5_300v4.jpg(780×373)."
 https://www.ligo.caltech.edu/system/slides/binaries/6/slide_large_image/aerial_ligo5_300v4.jpg?16
 07649366 (accessed Sep. 11, 2021).
- [4] EDWARDS, "VACUUM EQUIPMENT FOR RESEARCH AND DEVELOPMENT," *EDWARDS*, 2021.
- "Kurt J. Lesker Company | Flange Systems Overview | Vacuum Science Is Our Business." https://www.lesker.com/newweb/flanges/flanges_technicalnotes_overview_1.cfm (accessed Sep. 11, 2021).
- "Kurt J. Lesker Company | Valves Technical Notes | Vacuum Science Is Our Business."
 https://www.lesker.com/newweb/valves/valves_technicalnotes_1.cfm?pgid=0 (accessed Sep. 11, 2021).

9/13/21, NPOI Vacuum Manifold, 21F03

References

- [7] "Metal Expansion Joints and Metal Bellows". macoga.com. [online] Available at: https://www.macoga.com/en/metal-expansion-joints. [Accessed 11 September 2021]
- [8] 2017, *Vacuum Technology of the LIGO Interferometer*[PowerPoint slides], Available at: https://dcc.ligo.org/public/0141/G1700589/001/SocalAVS%20Talk_rev.003.pdf
- [9] Altemos, V. O., Brubak, W. M., Carlson, R. W., Deniso, D. R., Dobrowol, Z. C., Hablani, M. H., Harr, D. J., Lamont, L. T., Lichtman, D., Milleron, N., Osterstr, G., Shapir, Y., Thomas, M. T., Weissler, G. L., Wolgas, R.C. 1979, *Vacuum Physics and Technology* (Vol 14), Academic Press
- [10] F. Valentini, "FORMAL METHODOLOGY FOR SAFETY-CRITICAL SYSTEMS ENGINEERING AT CERN," 14th International Conference on Accelerator and Large Experimental Physics Control Systems, Oct. 2013.

ISBN 978-3-95450-139-7 921

[11] A. Weinstein, "LIGO Caltech 40 Meter Laboratory Laser Safety Plan," LIGO, 10-May-2001.
 [Online]. Available: https://labcit.ligo.caltech.edu/~ajw/40m/40mPSL_Safety. [Accessed: 10-Sep-2021].

Questions?

Appendix: Moment on manifold

$$A = \frac{\pi D^2}{4}$$

$$A_{manifold} = \frac{\pi (2[in])^2}{4} = 3.14 [in^2]$$

F = A * P

$$F_{manifold} = (3.14[in^{2}]) \left(14.7 \left[\frac{lbf}{in^{2}} \right] \right) = 46.16[lbf]$$
$$M = F * s$$

 $M_{manifold} = (47.16[lbf])(1[ft]) = 46.16[ft * lbf]$

$$M_{total} = M_{manifold} * 6_{tanks} = 277 [ft * lbf]$$